SPSD Matrix Approximation vis Column Selection: Theories, Algorithms, and Extensions

نویسندگان

  • Shusen Wang
  • Luo Luo
  • Zhihua Zhang
چکیده

Symmetric positive semidefinite (SPSD) matrix approximation is an important problem with applications in kernel methods. However, existing SPSD matrix approximation methods such as the Nyström method only have weak error bounds. In this paper we conduct in-depth studies of an SPSD matrix approximation model and establish strong relative-error bounds. We call it the prototype model for it has more efficient and effective extensions, and some of its extensions have high scalability. Though the prototype model itself is not suitable for large-scale data, it is still useful to study its properties, on which the analysis of its extensions relies. This paper offers novel theoretical analysis, efficient algorithms, and a highly accurate extension. First, we establish a lower error bound for the prototype model and improve the error bound of an existing column selection algorithm to match the lower bound. In this way, we obtain the first optimal column selection algorithm for the prototype model. We also prove that the prototype model is exact under certain conditions. Second, we develop a simple column selection algorithm with a provable error bound. Third, we propose a so-called spectral shifting model to make the approximation more accurate when the eigenvalues of the matrix decay slowly, and the improvement is theoretically quantified. The spectral shifting method can also be applied to improve other SPSD matrix approximation models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Modified Nystrom Method: Theories, Algorithms, and Extension

Symmetric positive semidefinite (SPSD) matrix approximation is an important problem with applications in kernel methods. However, existing SPSD matrix approximation methods such as the Nyström method only have weak error bounds. In this paper we conduct in-depth studies of an SPSD matrix approximation model and establish strong relative-error bounds. We call it the prototype model for it has mo...

متن کامل

Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data

We consider the problem of matrix column subset selection, which selects a subset of columns from an input matrix such that the input can be well approximated by the span of the selected columns. Column subset selection has been applied to numerous real-world data applications such as population genetics summarization, electronic circuits testing and recommendation systems. In many applications...

متن کامل

Towards More Efficient Nystrom Approximation and CUR Matrix Decomposition

Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The sketching based method, which we call the prototype model, produces relatively accurate approximations. The prototype model is computationally efficient on skinny matrices where one of the matrix dimensions is relatively ...

متن کامل

Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition

Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The standard sketch based method, which we call the prototype model, produces relatively accurate approximations, but is inefficient on large square matrices. The Nyström method is highly efficient, but can only achieve low a...

متن کامل

Provably Correct Active Sampling Algorithms for Matrix Column Subset Selection with Missing Data

We consider the problem of matrix column subset selection, which selects a subset of columns from an input matrix such that the input can be well approximated by the span of the selected columns. Column subset selection has been applied to numerous real-world data applications such as population genetics summarization, electronic circuits testing and recommendation systems. In many applications...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016